
Content-based Music Retrieval Using
Linear Scaling and Branch-and-bound Tree Search1

1 This is an on-going project supported by Cweb Inc. (http://www.4music.com.tw) and the Excellency Project sponsored by the National

Science Council at Taiwan, where the authors express many thanks.

Jyh-Shing Roger Jang, Hong-Ru Lee, Ming-Yang Kao
Multimedia Information Retrieval Laboratory

Computer Science Department, National Tsing Hua University, Taiwan
jang@cs.nthu.edu.tw

Abstract
This paper presents the use of linear scaling and tree search in a
content-based music retrieval system that can take a user's
acoustic input (8-second clip of singing or humming) via a
microphone and then retrieve the intended song from over 3000
candidate songs in the database. The system, known as Super
MBox, demonstrates the feasibility of real-time content-based
music retrieval with a high recognition rate. Super MBox first
takes the user's acoustic input from a microphone and converts it
into a pitch vector. Then a fast comparison engine using linear
scaling and tree search is employed to compute the similarity
scores. We have tested Super MBox and found the top-20
recognition rate is about 73% with about 1000 clips of test inputs
from people with mediocre singing skills.

1. Introduction
This paper presents a content-based music retrieval system, called
Super MBox, which allows the user to retrieve an intended song
via her/his acoustic input. That is, the system's intelligent
comparison engine allows the user to retrieve songs based on a
few notes sung or hummed naturally to the microphone. Therefore
the traditional ways of song retrieval (particularly in the
applications of karaoke or digital music library) based on the
search of keywords of titles, singers or lyrics can be totally
avoided.

The tasks of Super MBox can be categorized into three stages:
preprocessing, on-line processing, and postprocessing. For the
preprocessing stage, we need to read each candidate song in the
database and put the pitch/beat information into several indexed
files for quick access during comparison. Usually the songs in the
database are in MIDI (Music Instrument Digital Interface) format,
which contains all the music elements of a song and is equivalent
to sheet music of the song. The pitch/beat information of a song is
extracted from the MIDI's major (or vocal) track, which is defined
as the track that, when played alone, can be identified
immediately by a human who knows that song. The pitch/beat
information of each candidate song is then converted into a pitch
sequence that is suitable for comparison. (We can also obtain the
pitch sequence of each candidate song from the solo singing of a
person or from the playing of a single music instrument.)

During the on-line processing stage, the user can specify a query
by singing or humming a piece of tune (that contains several notes
for identifying a song) to a PC microphone directly.

Autocorrelation [20] is used to find the most likely pitch, and
some heuristics (such as continuity and human’s pitch range) are
employed to eliminate unwanted/false pitches which might result
from either unvoiced segments of the acoustic input or the
undesirable effect of pitch doubling/halving.

At the postprocessing stage, the computed pitch sequence together
with related timing information are transformed into the same
middle representation that was used in encoding the pitch/beat
information of songs in the database. Before invoking similarity
comparison, the middle representation must be transformed into a
format that does not rely on the absolute values of the identified
pitches. This is usually achieved by the difference operator, as
reported in the literature [7][18][17][16][19]. However, we found
that the difference operator amplifies noises and leads to poor
performance. Thus we adopt a heuristic method to shift the input
pitch sequence to have the same average value as that of each
song's in the database. The input pitch sequence is then
stretched/compressed to match to the template midi files in the
database. The branch-and-bound tree search procedure [6] is
applied to reduce the time for nearest neighbor search. The system
then returns a ranked list according to similarity scores.

The preprocessing requires human's interaction to identify the
major track for extracting the pitch/beat information from a song
in MIDI format. Once the major track is specified, the pitch/beat
transcription and the similarity score computation are totally
automatic. The average response time of our system (with 3000
songs) is about 2 seconds on a Pentium III 800 when the user
specifies a query from the start of a song. The performance is
satisfactory, as long as the users can sing or hum the intended
song with more or less correct pitches.

2. Related Work
Ghias et al. [7] published one of the early papers on query by
singing. They applied autocorrelation to obtain the fundamental
frequency, and the pitch vector is then cut into notes. To
accommodate the problem of different starting key, the obtained
notes are converted into ternary contour of three characters: U (up,
meaning this note is higher than the previous one), R (repeat,
meaning this note is the same as the previous one), D (down,
meaning this note is lower than the previous one). The
comparison engine, based on longest common subsequence, is
then applied to the ternary contours to find the most likely song.
However, due to the limited computing power at that time, their

pitch tracking takes 20-45 seconds, and there were only 183 songs
in the database.

R. J. McNab et al. [18][17][16][19], in collaboration with New
Zealand Digital Library, have published several papers on their
experiment of query by singing. They applied Gold-Rabiner
algorithm [8] for pitch tracking, and the pitch vector was then cut
into notes based on energy levels and transition amounts. There
were about 9400 songs in their database and they are the first one
to put their system on the web. Their system, though lack of
performance evaluation in terms of recognition rate, is still
considered an excellent example of content-based music retrieval
for real-world applications.

Kosugi et al. [13] at NTT, Japan, have published several papers
on their MIR system called SoundCompass. Their system has
11,132 song versions (or 10,069 songs) and the comparison
engine takes several different feature vectors including tone
transition, partial tone transition, and tone distribution. The final
ranking is a "or'ed" result among all rankings from different
features. The retrieval time of SoundCompass is about 1 second
and the top-5 recognition rate is about 75%. However, their
system requires users to hum “ta” and follow the beats of a
metronome, which is a significant restriction and not always
possible for other input channel (such as from a telephone.)

The author has also published several papers [3][14][10] on
content-based music retrieval. The focus of the publications (in
particular the last one) is on the use of dynamic programming
techniques for elastic match in the comparison engine.

Other related work can be found at the first International
Symposium on Music Information Retrieval held at Plymouth,
Massachusetts. Most of the published papers at the conference can
be found at the conference web site [9].

3. Operations of Super MBox
The operations of Super MBox can be divided into two steps:
pitch tracking and comparison engine.

3.1 Pitch Tracking
The 8-second acoustic input is first put into a low-pass filter with
cutoff frequency at 1047 Hz. Then the input signals are put into
frames of 512 points, with 340 points of overlap; this corresponds
to 1/64 second for each pitch frequency. Then every 4 points of
the pitch sequence are averaged to merge into a single frequency,
thus the final pitch vector has a time scale of 1/16 second.

There are plenty methods for pitch tracking in the literature. For
our system, we have implemented pitch tracking using
autocorrelation function [20].

After obtaining the pitch frequencies, we use the following
formula to transform them into the representation of semitone:

69
440

log*12 2 +






= freqsemitone

The semitone representation here is equivalent to the one used by
MIDI format, where 69 represents central LA (A440, 440 Hz).
Subsequent smoothing and comparison operations are based on
semitones.

To avoid pitch-doubling and other undesirable effects, we take the
following steps to smooth the pitch contour:

1. If the energy level is lower than a threshold, then the
corresponding pitch semitones are set to zero (or rest).

2. If the identified pitch semitones are higher than 84 (1046.5 Hz
in frequency) or lower than 40 (82.4 Hz in frequency), they are
also set to zero (or rest).

3. Use center clipping [20] after autocorrelation.
4. Use a median filter of order 5 to smooth the pitch sequence.

3.2 Comparison Engine Using Linear Scaling
and Branch-and-bound Tree Search

Differences between the input pitch sequence and the intended
song in the database comes from two origins:

1. Key transposition
2. Tempo variation

Key transposition can be simply handled by mean subtraction. For
most users, tempo variation is attributed to linear (proportional)
variation. Hence we can apply linear scaling to the input sequence
before comparing it to the songs in the database. For simplicity,
we assume the comparison always starts at the beginning of a
song. Suppose that the identified pitch sequence corresponds to
d seconds. Then we need to compress/stretch the sequence to get
10 variants with lengths equally distributed between d75.0 to

d25.1 . The distance between the pitch sequence and a song is
then defined as the minimum of the ten Euclidean distances
between the 10 compressed or stretched versions and the song.
The system then lists the top-20 songs with the smallest distances.

The primary goal of Super MBox is to find the songs in the
database that is closest to the query input in terms of the distance
measure. This is a typical problem of nearest neighbor search
(NNS) and has been widely studies in the pattern recognition
literature. A more formal definition of NNS can be stated as
follows. Given a set of n objects),,,{ 21 noooS �= and a

query input q , find the object ko in S such that),(koqdist

is the smallest among all kinioqdist i ≠= ,,,1),,(� ,

where),(⋅⋅dist is a distance function defined for any two
objects. Most speedup mechanisms [2][21] for NNS assume that
the objects in S can be expressed as vectors in a high
dimensional space and the distance function is simply the
Euclidean distance. To fulfill this constraint, we require the user
to singing at least 8 seconds such that we can obtain a pitch
sequence of 128 elements. Moreover, whenever there are rests in
the pitch sequence, we replace it with the previous non-rest pitch.
These little tricks make both q and io vectors in 128-
dimensional space, so we can apply tree search methods, such as
vantage-point tree search [23] and branch-and-bound tree search
[6], to speed the process of nearest neighbor search.

4. Performance Evaluation
In this section we present the performance evaluation of Super
Mbox based on linear scaling and branch-and-bound tree search.

We have a dataset of around 1000 wave files of singing or
humming by about 20 persons (12 males, 8 females). Specs of the
dataset are:

� No. of clips: 1000
� Duration: 8 seconds
� Sample rate: 11025 samples/second
� Resolution: 8 bits
� Type: Single channel (mono)
� Start position: Beginning of a song

All of the recordings start from the beginning of a song. The specs
of Super MBox and our platform are listed next:

� CPU: Pentium-III 800MHz
� RAM: 256 MB
� No. of candidate songs: 3000
� Pitch interval: 1/16 seconds (or equivalently, 128

elements in each pitch sequence)
� No. of variants of the input sequence: 10 (whos length

are equally spaced between d75.0 and d25.1 .)
In our branch-and-bound tree search, we used k-means clustering
method to construct a search tree with 4 levels and each node has
5 children, corresponding to a tree with 156 nodes. The speedup
factor brought by the tree search is about 4.

With the use of tree search, the response time of the system is
reduced from 8 to 2 seconds. The ranking statistics can be view
from the following pie chart:

59%

5%

7%

2%

5%

2%

12%

7%

Rank=1
Rank=2~3
Rank=4~10
Rank=11~20
Rank=21~50
Rank=51~100
Rank=101~1000
Rank=1001~∞

From the above plot, the top-20 recognition rate (percentage of
recordings that Super MBox can find the correct intended songs
in the top-20 ranking) is about 73%, the top-3 recognition rate is
64%, and the top-1 recognition rate is 59%.

The high Top-20 recognition rate demonstrate the feasibility of
Super Mbox as an real-time content-based music retrieval system.
Moreover, since there is no need to do note segmentation, the
system does not require the user to sing “la” or “ta”. Hence the
user can sing or hum in a way that is the most natural to the user.
This can help the user to present the song more accurately.

We did carry error analysis on the low-ranked wave files and
found that most of the mistakes comes from non-technical issues,
such as:

1. The gain of the microphone is too low, leading to a low signal
to noise ratio.

2. Some people started to talk or laugh during the 8-second
recording.

3. Some of the recording was performed on a PC with a sound
card installed with wrong drivers. This makes the recording
quality very poor.

The recognition rate could be higher if we eliminated these
disqualified wave files. On the other hand, via the error analysis,
we did find certain drawback of our system. Most importantly,
clips with low pitch are prone to error. This is a weakness of our
pitch tracking algorithm and will be investigated in the near future.
Several implementation techniques also speed up the comparison
engine up to a factor of three. These techniques are summarized as
follows.

1. Partial distance computation: During the distance computation,
if the accumulated distance is already greater than the
maximum distance of the current top-20 ranked songs, quit
distance computation immediately.

2. Comparison order rescheduling: Always put the most
frequently selected songs at the beginning for comparison. This
is to be used jointly with "partial distance computation".

3. Integer computation: Do pitch tracking and distance
computation using the integer data type instead of floating or
double precision data type. The truncated error can be partially
offset by multiply integer variables (for instance, pitch in
semitone) by a scaling factor, say 10.

4. Programming techniques: There are quite a few programming
techniques in C to speed up execution. For instance, avoid
using branching statements such as "if" and “switch”:

We have implemented the Super MBox for both standalone and
network versions. To test drive the network version of Super
MBox, you can download a client program from the author’s
homepage at:

http://www.cs.nthu.edu.tw/~jang

The pitch tracking part is done at the client program to reduce
server load.

The standalone version of Super MBox can be downloaded from
the homepage of CWeb Technology Inc.:

http://www.4music.com.tw

The standalone version has much more personalization features,
such as query by speech, and personalized recording for candidate
songs, karaoke function, etc.

5. Conclusions and Future Work
In this paper, we have presented a content-based music retrieval
system with a comparison engine based on linear scaling and
branch-and-bound tree search. The system can take the user’s
acoustic input (singing, humming, or music instrument playing)
and return the intended song in about 2 seconds. We have
performed extensive tests on Super MBox; the response time and
recognition rate of the systems demonstrate the feasibility of the
system’s usage as the query engine for music digital libraries. We

http://www.4music.com.tw/

have also implemented a network version so people all over the
world can try it directly.

Though Super MBox is a viable project, there are many things
that we can explore to improve the system. Immediate future work
includes the following items:

1. Low pitch sometimes leads to error in our pitch determination
algorithms; we need to explore other methods for a better,
reliable pitch tracking. Since pitch tracking takes only a small
amount of time, perhaps we can try some other sophisticated
methods such as combination of classifiers.

2. To deal with nonlinear tempo variation, we can apply dynamic
time warping [20] to serve as a suitable distance measure, as
reported in [10]. However, dynamic time warping is
computation intensive and we need to find a balance between
performance and response time.

6. References
[1] Brown, J. and Zhang, B. “Musical frequency tracking

using the methods of conventional and ‘narrowed’
autocorrelation”. Journal of the Acoustical Society of
America, Volume 89, Number 5, pages 2346-2354,
1991.

[2] Chan, Chok-ki, and Ma, Chi-Kit, “A Fast Method of
Designing Better Codebooks for Image Vector
Quantization,” IEEE Transactions on
Communications, Vol. 42, No. 2/3/4, PP. 237-242,
February/March/April, 1994.

[3] Chen, B. and Jang, J.-S. Roger "Query by Singing",
11th IPPR Conference on Computer Vision, Graphics,
and Image Processing, PP. 529-536, Taiwan, Aug
1998.

[4] Flickner, M. and Sawhney, H. S., Ashley, Huang, J.,
Q., Dom, Gorkani, B., Hafner, Lee, M., J., D.,
Petkovic, D., D. Steele, and Yanker, P. “Query by
image and video content: the QBIC system,” IEEE
Computers, Vol. 28, No. 9, pp.23-32, 1995.

[5] Foote, J. "An Overview of Audio Information
Retrieval," In Multimedia Systems, vol. 7 no. 1, pp.
2-11, ACM Press/Springer-Verlag, January 1999.

[6] Fukunaga, Keinosuke and M. Narendra, Patrenahalli
"A Branch and Bound Algorithm for Computing K-
Nearest Neighbors", IEEE Transactions on
Computers, July 1975.

[7] Ghias, A. J. and Logan, D. Chamberlain, B. C. Smith,
“Query by humming-musical information retrieval in
an audio database”, ACM Multimedia ’95 San
Francisco, 1995.
(http://www2.cs.cornell.edu/zeno/Papers/humming/h
umming.html)

[8] Gold, B. and Rabiner, L. "Parallel processing
techniques for estimating pitch periods of speech in
the time domain," J. Acoust. Soc. Am. 46 (2), pp 442-
448, 1969.

[9] International Symposium on Music Information
Retrieval (MUSIC IR 2000), Plymouth,
Massachusetts, Oct. 23-25, 2000.
(http://ciir.cs.umass.edu/music2000/)

[10] Jang, J.-S. Roger and Gao, Ming-Yang "A Query-by-

Singing System based on Dynamic Programming",
International Workshop on Intelligent Systms
Resolutions (the 8th Bellman Continuum), PP. 85-89,
Hsinchu, Taiwan, Dec 2000.

[11] Katsavounidis, Ioannis and Kuo, C.-C Jay and Zhang,
Zhen, “Fast Tree-Structured Nearest Neighbor
Encoding for Vector Quantization,” IEEE
Transactions on Image Processing, Vol. 5, No. 2, PP.
398-404, Feb. 1996.

[12] Kosugi, N. Y., Kon'ya, Nishihara, S., Yamamura, M.
and Kushima, K. "Music Retrieval by Humming –
Using Similarity Retrieval over High Dimensional
Feature Vector Space," pp 404-407, IEEE 1999.

[13] Kosugi, N., Nishihara, Y., Sakata, T., Yamamuro,
M., and Kushima, K., "A practical query-by-
humming system for a large music database," In
Proc. ACM Multimedia 2000, November 2000.

[14] Lee, I-Yang, Jang, J.-S. Roger and Hsu, Wen-Hao
"Content-based Music Retrieval from Acoustic Input",
12th IPPR Conference on Computer Vision, Graphics,
and Image Processing, PP. 325-330, Taiwan, August
1999.

[15] Liu, C. C. and Chen, A. L. P., “A Multimedia
Database System Supporting Content-Based
Retrieval”, Journal of Information Science and
Engineering, 13, PP. 369-398,1997.

[16] McNab, R. J. and Smith, L. A. “Melody transcription
for interactive applications” Department of Computer
Science University of Waikato, New Zealand.

[17] McNab, R. J., Smith, L. A. and Witten, Jan H. “Signal
Processing for Melody Transcription” Proceedings of
the 19th Australasian Computer Science Conference,
1996.

[18] McNab, R. J., Smith, L. A. and Witten, Jan H.
“Towards the Digital Music Library: Tune Retrieval
from Acoustic Input” ACM, 1996.

[19] McNab, R. J., Smith, L. A., Witten, I. H. and
Henderson, C. L. "Tune Retrieval in the Multimedia
Library,"

[20] Proakis, J. R. J. G. and Hansen, J. H. L. "Discrete-
time processing of speech signals," New York,
Macmillan Pub. Co., 1993.

[21] Torres, L. and Huguet, J., “An Improvement on
Codebook Search for Vector Quantization,” IEEE
Transactions on Communications, Vol 42, No. 2/3/4,
PP. 208-210, February/March/April, 1994.

[22] Uitdenbogerd, A. and Zobel, J. "Melodic Matching
Techniques for Large Music Databases",
(http://www.kom.e-technik.tu-
darmstadt.de/acmmm99/ep/uitdenbogerd/)

[23] Yianilos, Peter N. “Data structures and algorithms for
nearest neighbor search in general metric spaces,” In
Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 311-321,
Austin, Texas, 25-27 January 1993

[24] Yianilos, Peter N. “Excluded Middle Vantage Point
Forests for Nearest Neighbor Search,” NEC Research
Institute Technical Report, 1998

http://ciir.cs.umass.edu/music2000/
http://www.kom.e-technik.tu-darmstadt.de/acmmm99/ep/uitdenbogerd/
http://www.kom.e-technik.tu-darmstadt.de/acmmm99/ep/uitdenbogerd/

