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Abstract 
This paper presents the use of linear scaling and tree search in a 
content-based music retrieval system that can take a user's 
acoustic input (8-second clip of singing or humming) via a 
microphone and then retrieve the intended song from over 3000 
candidate songs in the database. The system, known as Super 
MBox, demonstrates the feasibility of real-time content-based 
music retrieval with a high recognition rate. Super MBox first 
takes the user's acoustic input from a microphone and converts it 
into a pitch vector. Then a fast comparison engine using linear 
scaling and tree search is employed to compute the similarity 
scores. We have tested Super MBox and found the top-20 
recognition rate is about 73% with about 1000 clips of test inputs 
from people with mediocre singing skills. 

1. Introduction 
This paper presents a content-based music retrieval system, called 
Super MBox, which allows the user to retrieve an intended song 
via her/his acoustic input. That is, the system's intelligent 
comparison engine allows the user to retrieve songs based on a 
few notes sung or hummed naturally to the microphone. Therefore 
the traditional ways of song retrieval (particularly in the 
applications of karaoke or digital music library) based on the 
search of keywords of titles, singers or lyrics can be totally 
avoided. 

The tasks of Super MBox can be categorized into three stages: 
preprocessing, on-line processing, and postprocessing.  For the 
preprocessing stage, we need to read each candidate song in the 
database and put the pitch/beat information into several indexed 
files for quick access during comparison.  Usually the songs in the 
database are in MIDI (Music Instrument Digital Interface) format, 
which contains all the music elements of a song and is equivalent 
to sheet music of the song. The pitch/beat information of a song is 
extracted from the MIDI's major (or vocal) track, which is defined 
as the track that, when played alone, can be identified 
immediately by a human who knows that song. The pitch/beat 
information of each candidate song is then converted into a pitch 
sequence that is suitable for comparison. (We can also obtain the 
pitch sequence of each candidate song from the solo singing of a 
person or from the playing of a single music instrument.) 

During the on-line processing stage, the user can specify a query 
by singing or humming a piece of tune (that contains several notes 
for identifying a song) to a PC microphone directly. 

Autocorrelation [20] is used to find the most likely pitch, and 
some heuristics (such as continuity and human’s pitch range) are 
employed to eliminate unwanted/false pitches which might result 
from either unvoiced segments of the acoustic input or the 
undesirable effect of pitch doubling/halving. 

At the postprocessing stage, the computed pitch sequence together 
with related timing information are transformed into the same 
middle representation that was used in encoding the pitch/beat 
information of songs in the database. Before invoking similarity 
comparison, the middle representation must be transformed into a 
format that does not rely on the absolute values of the identified 
pitches. This is usually achieved by the difference operator, as 
reported in the literature [7][18][17][16][19]. However, we found 
that the difference operator amplifies noises and leads to poor 
performance. Thus we adopt a heuristic method to shift the input 
pitch sequence to have the same average value as that of each 
song's in the database. The input pitch sequence is then 
stretched/compressed to match to the template midi files in the 
database. The branch-and-bound tree search procedure [6] is 
applied to reduce the time for nearest neighbor search. The system 
then returns a ranked list according to similarity scores. 

The preprocessing requires human's interaction to identify the 
major track for extracting the pitch/beat information from a song 
in MIDI format. Once the major track is specified, the pitch/beat 
transcription and the similarity score computation are totally 
automatic. The average response time of our system (with 3000 
songs) is about 2 seconds on a Pentium III 800 when the user 
specifies a query from the start of a song. The performance is 
satisfactory, as long as the users can sing or hum the intended 
song with more or less correct pitches.  

2. Related Work 
Ghias et al. [7] published one of the early papers on query by 
singing. They applied autocorrelation to obtain the fundamental 
frequency, and the pitch vector is then cut into notes. To 
accommodate the problem of different starting key, the obtained 
notes are converted into ternary contour of three characters: U (up, 
meaning this note is higher than the previous one), R (repeat, 
meaning this note is the same as the previous one), D (down, 
meaning this note is lower than the previous one). The 
comparison engine, based on longest common subsequence, is 
then applied to the ternary contours to find the most likely song. 
However, due to the limited computing power at that time, their 



pitch tracking takes 20-45 seconds, and there were only 183 songs 
in the database. 

R. J. McNab et al. [18][17][16][19], in collaboration with New 
Zealand Digital Library, have published several papers on their 
experiment of query by singing. They applied Gold-Rabiner 
algorithm [8]  for pitch tracking, and the pitch vector was then cut 
into notes based on energy levels and transition amounts. There 
were about 9400 songs in their database and they are the first one 
to put their system on the web. Their system, though lack of 
performance evaluation in terms of recognition rate, is still 
considered an excellent example of content-based music retrieval 
for real-world applications. 

Kosugi et al. [13] at NTT, Japan, have published several papers 
on their MIR system called SoundCompass. Their system has 
11,132 song versions (or 10,069 songs) and the comparison 
engine takes several different feature vectors including tone 
transition, partial tone transition, and tone distribution. The final 
ranking is a "or'ed" result among all rankings from different 
features. The retrieval time of SoundCompass is about 1 second 
and the top-5 recognition rate is about 75%. However, their 
system requires users to hum “ta” and follow the beats of a 
metronome, which is a significant restriction and not always 
possible for other input channel (such as from a telephone.) 

The author has also published several papers [3][14][10] on 
content-based music retrieval. The focus of the publications (in 
particular the last one) is on the use of dynamic programming 
techniques for elastic match in the comparison engine. 

Other related work can be found at the first International 
Symposium on Music Information Retrieval held at Plymouth, 
Massachusetts. Most of the published papers at the conference can 
be found at the conference web site [9]. 

3. Operations of Super MBox 
The operations of Super MBox can be divided into two steps: 
pitch tracking and comparison engine.  

3.1 Pitch Tracking 
The 8-second acoustic input is first put into a low-pass filter with 
cutoff frequency at 1047 Hz. Then the input signals are put into 
frames of 512 points, with 340 points of overlap; this corresponds 
to 1/64 second for each pitch frequency. Then every 4 points of 
the pitch sequence are averaged to merge into a single frequency, 
thus the final pitch vector has a time scale of 1/16 second.  

There are plenty methods for pitch tracking in the literature. For 
our system, we have implemented pitch tracking using 
autocorrelation function [20]. 

After obtaining the pitch frequencies, we use the following 
formula to transform them into the representation of semitone: 
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The semitone representation here is equivalent to the one used by 
MIDI format, where 69 represents central LA (A440, 440 Hz). 
Subsequent smoothing and comparison operations are based on 
semitones. 

To avoid pitch-doubling and other undesirable effects, we take the 
following steps to smooth the pitch contour:  

1. If the energy level is lower than a threshold, then the 
corresponding pitch semitones are set to zero (or rest). 

2. If the identified pitch semitones are higher than 84 (1046.5 Hz 
in frequency) or lower than 40 (82.4 Hz in frequency), they are 
also set to zero (or rest). 

3. Use center clipping [20] after autocorrelation.  
4. Use a median filter of order 5 to smooth the pitch sequence. 

3.2 Comparison Engine Using Linear Scaling 
and Branch-and-bound Tree Search 

Differences between the input pitch sequence and the intended 
song in the database comes from two origins: 

1. Key transposition 
2. Tempo variation 
 
Key transposition can be simply handled by mean subtraction. For 
most users, tempo variation is attributed to linear (proportional) 
variation. Hence we can apply linear scaling to the input sequence 
before comparing it to the songs in the database. For simplicity, 
we assume the comparison always starts at the beginning of a 
song. Suppose that the identified pitch sequence corresponds to 
d  seconds. Then we need to compress/stretch the sequence to get 
10 variants with lengths equally distributed between d75.0  to 

d25.1 . The distance between the pitch sequence and a song is 
then defined as the minimum of the ten Euclidean distances 
between the 10 compressed or stretched versions and the song. 
The system then lists the top-20 songs with the smallest distances. 
 
The primary goal of Super MBox is to find the songs in the 
database that is closest to the query input in terms of the distance  
measure. This is a typical problem of nearest neighbor search 
(NNS) and has been widely studies in the pattern recognition 
literature. A more formal definition of NNS can be stated as 
follows. Given a set of n objects ),,,{ 21 noooS �=  and a 

query input q , find the object ko  in S  such that ),( koqdist  

is the smallest among all kinioqdist i ≠= ,,,1),,( � , 

where ),( ⋅⋅dist  is a distance function defined for any two 
objects. Most speedup mechanisms [2][21] for NNS assume that 
the objects in S  can be expressed as vectors in a high 
dimensional space and the distance function is simply the 
Euclidean distance. To fulfill this constraint, we require the user 
to singing at least 8 seconds such that we can obtain a pitch 
sequence of 128 elements. Moreover, whenever there are rests in 
the pitch sequence, we replace it with the previous non-rest pitch. 
These little tricks make both q  and io  vectors in 128-
dimensional space, so we can apply tree search methods, such as 
vantage-point tree search [23] and branch-and-bound tree search 
[6], to speed the process of nearest neighbor search. 

4. Performance Evaluation 
In this section we present the performance evaluation of Super 
Mbox based on linear scaling and branch-and-bound tree search. 



We have a dataset of around 1000 wave files of singing or 
humming by about 20 persons (12 males, 8 females). Specs of the 
dataset are: 

� No. of clips: 1000 
� Duration: 8 seconds 
� Sample rate: 11025 samples/second 
� Resolution: 8 bits 
� Type: Single channel (mono) 
� Start position: Beginning of a song 

All of the recordings start from the beginning of a song. The specs 
of Super MBox and our platform are listed next: 

� CPU: Pentium-III 800MHz 
� RAM: 256 MB 
� No. of candidate songs: 3000 
� Pitch interval: 1/16 seconds (or equivalently, 128 

elements in each pitch sequence) 
� No. of variants of the input sequence: 10 (whos length 

are equally spaced between d75.0 and d25.1 .) 
In our branch-and-bound tree search, we used k-means clustering 
method to construct a search tree with 4 levels and each node has 
5 children, corresponding to a tree with 156 nodes. The speedup 
factor brought by the tree search is about 4. 

With the use of tree search, the response time of the system is 
reduced from 8 to 2 seconds. The ranking statistics can be view 
from the following pie chart: 
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From the above plot, the top-20 recognition rate (percentage of 
recordings that Super MBox can find the correct intended songs 
in the top-20 ranking) is about 73%, the top-3 recognition rate is 
64%, and the top-1 recognition rate is 59%. 

The high Top-20 recognition rate demonstrate the feasibility of 
Super Mbox as an real-time content-based music retrieval system. 
Moreover, since there is no need to do note segmentation, the 
system does not require the user to sing “la” or “ta”. Hence the 
user can sing or hum in a way that is the most natural to the user. 
This can help the user to present the song more accurately. 

We did carry error analysis on the low-ranked wave files and 
found that most of the mistakes comes from non-technical issues, 
such as: 

1. The gain of the microphone is too low, leading to a low signal 
to noise ratio. 

2. Some people started to talk or laugh during the 8-second 
recording. 

3. Some of the recording was performed on a PC with a sound 
card installed with wrong drivers. This makes the recording 
quality very poor. 

 
The recognition rate could be higher if we eliminated these 
disqualified wave files. On the other hand, via the error analysis, 
we did find certain drawback of our system. Most importantly, 
clips with low pitch are prone to error. This is a weakness of our 
pitch tracking algorithm and will be investigated in the near future. 
Several implementation techniques also speed up the comparison 
engine up to a factor of three. These techniques are summarized as 
follows. 

1. Partial distance computation: During the distance computation, 
if the accumulated distance is already greater than the 
maximum distance of the current top-20 ranked songs, quit 
distance computation immediately. 

2. Comparison order rescheduling: Always put the most 
frequently selected songs at the beginning for comparison. This 
is to be used jointly with "partial distance computation". 

3. Integer computation: Do pitch tracking and distance 
computation using the integer data type instead of floating or 
double precision data type. The truncated error can be partially 
offset by multiply integer variables (for instance, pitch in 
semitone) by a scaling factor, say 10. 

4. Programming techniques: There are quite a few programming 
techniques in C to speed up execution. For instance, avoid 
using branching statements such as "if" and “switch”: 

 
We have implemented the Super MBox for both standalone and 
network versions. To test drive the network version of Super 
MBox, you can download a client program from the author’s 
homepage at: 

http://www.cs.nthu.edu.tw/~jang 
 
The pitch tracking part is done at the client program to reduce 
server load. 

The standalone version of Super MBox can be downloaded from 
the homepage of CWeb Technology Inc.: 

http://www.4music.com.tw 

The standalone version has much more personalization features, 
such as query by speech, and personalized recording for candidate 
songs, karaoke function, etc. 

5. Conclusions and Future Work 
In this paper, we have presented a content-based music retrieval 
system with a comparison engine based on linear scaling and 
branch-and-bound tree search. The system can take the user’s 
acoustic input (singing, humming, or music instrument playing) 
and return the intended song in about 2 seconds. We have 
performed extensive tests on Super MBox; the response time and 
recognition rate of the systems demonstrate the feasibility of the 
system’s usage as the query engine for music digital libraries. We 

http://www.4music.com.tw/


have also implemented a network version so people all over the 
world can try it directly. 

Though Super MBox is a viable project, there are many things 
that we can explore to improve the system. Immediate future work 
includes the following items: 

1. Low pitch sometimes leads to error in our pitch determination 
algorithms; we need to explore other methods for a better, 
reliable pitch tracking. Since pitch tracking takes only a small 
amount of time, perhaps we can try some other sophisticated 
methods such as combination of classifiers. 

2. To deal with nonlinear tempo variation, we can apply dynamic 
time warping [20] to serve as a suitable distance measure, as 
reported in [10]. However, dynamic time warping is 
computation intensive and we need to find a balance between 
performance and response time. 
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